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Abstract This study proposed a sequential modeling ap-
proach using an artificial neural network (ANN) to develop
four independent models which were able to predict
biotreatment effluent variables of a full-scale coking wastewa-
ter treatment plant (CWWTP). Suitable structure and transfer
function of ANN were optimized by genetic algorithm. The
sequential approach, which included two parts, an influent
estimator and an effluent predictor, was used to develop dy-
namic models. The former parts of models estimated the var-
iations of influent COD, volatile phenol, cyanide, and NH4

+-
N. The later parts of models predicted effluent COD, volatile
phenol, cyanide, and NH4

+-N using the estimated values and
other parameters. The performance of these models was eval-
uated by statistical parameters (such as coefficient of determi-
nation (R2), etc.). Obtained results indicated that the estimator
developed dynamic models for influent COD (R2=0.871),
volatile phenol (R2=0.904), cyanide (R2=0.846), and NH4

+-

N (R2=0.777), while the predictor developed feasible models
for effluent COD (R2=0.852) and cyanide (R2=0.844), with
slightly worse models for effluent volatile phenol (R2=0.752)
and NH4

+-N (R2=0.764). Thus, the proposed modeling pro-
cesses can be used as a tool for the prediction of CWWTP
performance.
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Abbreviations
CWW Coking wastewater
CWWTPs Coking wastewater treatment plants
COD Chemical oxygen demand
BOD Biochemical oxygen demand
ADM1 Anaerobic digestion model no.1
ANN Artificial neural network
BP-ANN Back-propagation-ANN
GA Genetic algorithm
DO Dissolved oxygen
NH4

+-N Ammonium nitrogen
GDX Gradient descent with momentum and adaptive

learning rate back propagation
BR Bayesian regularization
RMSE Root mean squared error
MAE Mean absolute error
R2 Coefficient of determination

Introduction

Coking wastewater (CWW) is a heterogeneous complex gen-
erated during the coal coking, coal gas purification, and by-
product recovery processes in coke factory which provide
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important raw materials for steelmaking (Pal and Kumar
2014). It contains considerable amounts of phenols, polycy-
clic aromatic hydrocarbons, heterocyclic compounds, cya-
nide, and sulfide compounds. Some of these contaminants
are listed as US-EPA and EU priority pollutants (Angelino
and Gennaro 1997; Zhang et al. 2012). Thus, CWW has been
considered the most toxic wastewater (Kim et al. 2007). The
purification and harmless disposal of CWW are important to
insure water safety of receiving water bodies.

The conventional activated sludge process was the most
widely used treatment technology for CWW (Pal and Kumar
2014). However, the biofilm process was increasingly applied
for CWW treatment (Lai et al. 2008), especially the fluidized
bed biofilm reactor (Jing et al. 2009). Recently, several novel
types of processing, for example, anaerobic–aerobic–hydroly-
sis–aerobic (A/O/H/O) combined with fluidized bed biofilm
reactor, were successfully employed in CWW treatment plants
(CWWTPs) (Zhang et al. 2012). Since a strong nonlinear re-
lationship exists between the operating parameters and water
quality variables in biological processes, the operational diffi-
culties are frequently encountered in CWWTPs. Furthermore,
typical CWW contained high level cyanide (>50 mg L−1) and
volatile phenol (>200 mg L−1), which had significant biotoxic
to normal microorganism. Therefore, the biological processes
in CWWTPs may be susceptible to disturbances and toxic
loadings (Kim et al. 2009). The unsteady operation of
CWWTPs caused failure to achieve the effluent standards.

On-line sensors were used in municipal WWTPs, which
provided normal parameters, such as dissolved oxygen
(DO), COD, and ammonium nitrogen (NH4

+-N), for routine
monitoring and operation. However, the lack of accurate on-
line sensors for typical toxic variables in WWTPs, such as
cyanide and volatile phenol, resulted in delayed monitoring
of effluent. Even though these variables can be measured via
offline (laboratory) analyses, an inevitable time delay in a
range of few hours or days would result in the discharge of
effluent containing over-standard toxic contaminants, which
aggravated the potential risk of toxic effluent disposal (Hong
et al. 2007). Therefore, a reliable simulating model for
CWWTPs was essential to predict its performance and con-
trolling its operation.

The most popular model was the International Water Asso-
ciation Anaerobic Digestion Model No.1 (ADM1)
(Blumensaat and Keller 2005). However, the estimated pa-
rameters of ADM1 were generally case specific and difficult
to adapt for system modification (Hong et al. 2003), and the
contaminant composition of CWWwas different from normal
municipal wastewater. Therefore, the direct application of
ADM1 for CWWTPs might be infeasible. Alternatively, arti-
ficial neural network (ANN) has been increasingly used to
model wastewater treatment processes in recent years. The
advantages of ANN included the following: (1) learning of
nonlinear data processing, (2) capability of generalization,

and (3) tolerance of failure or incomplete data. Therefore,
the simulation using ANN has been extensively studied for
municipal WWTPs (Bongards 1999; Dürrenmatt and Gujer
2012; Güçlü and Dursun 2010). Furthermore, the operations
of WWTPs for industrial wastewater, such as paper-making
wastewater (Huang et al. 2012) and oily wastewater
(Pendashteh et al. 2011), were predicted using ANN. For
CWW, only a few research developed ANN for the prediction
of the performance of single treatment process, such as Fenton
oxidation (Zhu et al. 2011).

To the best of our knowledge, there is no literature that
reported the study about ANN simulation of CWWTPs. The
current study is the first report about the modeling of the
variables in a full-scale CWWTP using BP-ANN combined
with GA. The BP-ANN models were developed to success-
fully simulate the variation tendencies of COD, volatile phe-
nol, cyanide, and NH4

+-Nin, the influent and effluent of
biotreatment processes. The prediction performances of the
models under dynamical circumstances have been evaluated
and compared using statistical parameters. This study can be
used as a guide for the use of routinely on-line measured
parameters, such as pH, COD, DO, and NH4

+-N as input data,
to predict the performance of CWWTPs.

Materials and methods

CWWTP and data set

The data sets were collected from No.1 Songshan CWWTP,
which was located in Shaoguan Steel Company Ltd, Guang-
dong province, China, with a designed treatment capacity of
1680 m3 day−1. The continuous distilled ammonia wastewater
and discontinuous desulfurization wastewater contributed the
influents. Table 1 presents the statistical information of the
monitoring variables of these influents, and Fig. 1 shows the
schematic diagram of CWWTP.

Three treatment processes, including pretreatment,
biotreatment, and posttreatment, were conducted during daily
operation. The pretreatment included degreasing and sedi-
mentation. The influent was first degreased, following by a
coagulation sedimentation using ferrous sulfate and polyacryl-
amide to remove most particle materials and part of organic
contaminants. Then, liquid effluent went through the
biotreatment processes. An anoxic–aerobic1–aerobic2 (A/O1/
O2) system coupled with internal-loop biological fluidized
beds was applied to degrade organic contaminants. These
three fluidized beds have volumes of 2316, 3280, and
3920m3. The biological effluent then went through secondary
clarifiers, where the bacteria and remaining particles were co-
agulated using poly-aluminium chloride. Finally, the second-
ary clarifier effluent was discharged or reused. The data sets
contained daily variables of the biotreatment influent and
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effluent from 1 January 2012 to 31 December 2012, with a
total of 358 data points (8 data were absent during holiday).

Analytical methods

The operational data of influent and effluent of biotreatment
process were used to develop models. The analyzed variables
included COD, volatile phenols, NH4

+-N, total sulfides, cya-
nide, pH, flow rate, and DO. The COD was measured by on-
line CODmax-Plus monitors (Hach, USA), and NH4

+-N was
obtained using Amtax Compact analyzers (Hach, USA). The
concentration of volatile phenols, sulfide, and cyanide was
determined according to Standard Methods for the Examina-
tion of Water and Wastewater (APHA et al. 1998). The pH
value was determined by on-line GLI pH/ORP monitors
(Hach, USA). Furthermore, the DO concentrations in O1 and
O2 fluidized beds were monitored using on-line LDO moni-
tors (Hach, USA). The flow rate was determined by FXP4000
electromagnetic flow meters (ABB, Switzerland).

BP-ANN model and genetic algorithm

A multilayer perceptron neural network model trained by the
BP algorithm, which was a widely and successfully applied
ANN for prediction purposes (Show et al. 2013), was used to

predict the variables in CWWTP. The BP-ANN structure
consisted of one input layer, a minimum of one intermediate
or hidden layer, and one output layer. Each layer had a number
of neurons, which were connected linearly by weights to the
neurons in the neighboring layers. The structure of the ANN,
which had significant effects on the prediction, should be
carefully selected (Lee et al. 2011). A genetic algorithm was
used as the selected strategy to determine the number of hid-
den layers, the number of neurons in each layer, and the trans-
fer function type of each neuron (Goldberg 1989). All simu-
lations were conducted using a genetic adapted neural net-
work program that has been developed by Hong (Hong YS
1998). In this study, the number of generations in genetic
algorithm was 100, and each generation contained 250 candi-
date BP-ANN structures (population). The probability of se-
lection, crossover, and mutation was 45, 40, and 15%, respec-
tively. Three typical transfer functions, including logistic sig-
moid, hyperbolic tangent, and linear functions, were simulta-
neously tested.

Training algorithm

The training algorithm had effects on the performance of BP-
ANNmodels. Gradient descent with momentum and adaptive
learning rate back propagation (GDX) algorithm was robust

Table 1 Statistical characteristic of measured variables in no. 1 Songshan CWWTP

Parameter Distilled ammonia
wastewater

Desulfurization
wastewater

Total influent Biotreatment
influent

Biotreatment
effluent

Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean

pH 11.4 8.3 10.6 11.1 4.9 9.6 11.1 9.1 10.2 10.0 9.1 9.3 9.4 5.9 7.5

COD (mg L−1) 4526.6 2465.4 3276.1 11250.2 6216.4 8364.8 4899.5 2323.4 3499.8 3370.1 898.2 2104.7 419 136 233

Volatile phenol
(mg L−1)

1326.54 264.65 596.64 526.64 216.64 346.75 1225.87 312.45 653.39 852.14 146.32 397.26 0.68 0.04 0.23

Cyanide (mg L−1) 41.89 4.64 17.98 125.46 51.28 72.69 46.81 5.32 19.09 8.87 0.94 3.48 2.58 0.02 0.84

Sulfides 216.6 14.3 51.6 315.5 182.7 214.2 239.3 14.5 56.4 53.8 3.5 23.8 32.5 2.4 12.2

NH4
+-N (mg L−1) 164.3 4.3 30.7 1762.6 423.6 726.9 179.4 5.4 33.6 119.1 4.2 21.7 40.2 0.7 4.3

Mean flow rate
(m3 h−1)

60 Variable ∼ 60 ∼ 60 ∼ 60

Inflow period 24 h continuous inflow Variable - - -

Fig. 1 Schematic diagram of no.1 Songshan coking wastewater treatment plant
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and widely used for BP-ANN modeling (Riedmiller 1994).
Recently, the BP-ANN model trained by Bayesian regulariza-
tion (BR) was confirmed to provide satisfactory generalization
ability (Aggarwal et al. 2005). Therefore, GDX and BR were
used to train the BP-ANN models. Their prediction perfor-
mance was investigated by statistic parameters. In order to
avoid over fitting of model, training and testing process were
used (Schulze et al. 2005). The available raw data set (358
daily water quality data) was randomly partitioned into three
data sets: training set, validating set, and testing set. The num-
ber proportion of [training set: (validating set+testing set)]
was set at 2:1. The training set (233 daily data, ∼65 %) was
used to generate the models. The validating set (72 daily data,
∼20 %), which was not involved in the developments of
models, was used to optimize the network geometry and mod-
el parameters. Furthermore, the testing set (53 daily data,
∼15 %) was used to evaluate the applicability of the model.
In the present study, training was stopped at each iteration
(epochs), for every candidate model that was tested at each
step.

Sequential training processes

Most previous research applied to WWTPs aimed at the pre-
diction of effluent quality based on the influent quality. How-
ever, some process variables in the influent cannot be directly
obtained due to several reasons, such as a lack of reliable
online measurement systems and the delay of offline measure-
ment. In order to synchronously predict the variables of influ-
ent and effluent, Lee et al. developed a sequential modeling
process, which was composed of back-propagation-ANN
(BP-ANN) and genetic algorithm (GA) (Lee et al. 2011). In
current study, similar sequential modeling of BP-ANN was
conducted to develop four independent models for the predic-
tions of COD, volatile phenol, cyanide, and NH4

+-N removal
in biotreatment processes. The sequential modeling approach
was composed of two parts: (1) a process disturbance estima-
tor and (2) a process behavior predictor (Lee et al. 2011). The
architecture of this modeling approach is presented in Fig. 2.
In the case of COD, the first part (process disturbance estima-
tor) received seven measurable input variables (flow ratein,
NH4

+-Nin, pHin, volatile phenolin, cyanidein, sulfidesin, and
1 day before CODin) and provided an estimation of influent
COD (CODin). The output of the estimator subsequently
formed part of the inputs for the second part. The second part
predicted the effluent COD (CODef) based on nine inputted
variables, including estimated CODin, DO1 in O1 fluidized
bed, DO2 in O2 fluidized bed, measured flow ratein, NH4

+-
Nin, pHin, volatile phenolin, cyanidein, and sulfidesin. The se-
quential modeling approaches of volatile phenol, cyanide, and
NH4

+-N all followed similar processes. More details can be
found in Lee et al. (2011).

Evaluation of model performance

The performance of models was evaluated in terms of root
mean squared error (RMSE, Eq. 1), mean absolute error
(MAE, Eq. 2), and coefficient of determination (R2, Eq. 3)
between the predicted values and the measured values in train-
ing, validating, and testing data sets.
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where N was the number of data points, yi and yi
' were the

observed and predicted values, respectively. Furthermore, yi,-
mean and yi,mean

' were the mean observed values and mean
predicted values, respectively

Results and discussion

Comparison of GDX and BR algorithms

BP-ANN models were developed to estimate the influent var-
iables and predict the effluent variables of biotreatment. GDX
and BR algorithms were used to train all models until the best
fitting network architectures were obtained by GA. For each
variable (Table 2), the network structure obtained using GDX
algorithm was more complicated than the structure obtained
using BR algorithm. The training iterations using GDX were
also more than those using BR. The corresponding model
performance statistics for the best network architectures using
GDX and BR are listed in Table 3. All MAEs and RMSEs of
training and validating data sets using GDX algorithm were
lower than those using BR algorithm, indicating that GDX
algorithm trained the better fitting models for target-known
data set. However, the MAEs and RMSEs of testing data sets
using GDX algorithm were significantly higher than those
using BR algorithm, suggesting that the BR-trained models
had better generalizing capacity for target-unknown data
set. The results of R2 also showed that BR had better
performance than GDX. Consequently, BR was the bet-
ter training algorithm which had high generalizing ca-
pacity for the prediction of biological influent and ef-
fluent variables in current CWWTP. The best model for
each predicted variable using BR algorithm was chosen
and used for subsequent modeling.
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Estimation of biotreatment influent variables

Four independent BP-ANN models were developed to esti-
mate the influent COD, volatile phenol, cyanide, and NH4

+-N

(Fig. 2). The structure of the network (number of layers, num-
ber of hidden nodes, learning rate, momentum values) was
optimized during the training phase using GA. The validating
data sets were used to guarantee good generalization ability of
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Fig. 2 Schematic diagram of the sequential ANN modeling processes

Table 2 Optimized architecture
of model network using GDX and
BR algorithms

Predicted parameters Training algorithm Best network architecture Iteration Testing node numbers
for hidden layer

CODin GDX 5:11:1 1659 2-40
BR 5:6:1 672

Volatile phenolin GDX 5:7:1 1974 2-40
BR 4:4:1 364

Cyanidein GDX 4:6:1 2561 2-40
BR 3:4:1 921

NH4
+-Nin GDX 5:7:1 6359 2-40

BR 5:6:1 568

CODef GDX 7:13:1 3164 2-50
BR 8:10:1 1263

Volatile phenolef GDX 8:10:1 2469 2-50
BR 7:10:1 684

Cyanideef GDX 6:10:1 1897 2-50
BR 6:6:1 2415

NH4
+-Nef GDX 8:12:1 6845 2-50

BR 7:8:1 3695

Two BP-ANN training algorithms, including gradient descent with adaptive learning rate (GDX) algorithm and
Bayesian regularization (BR) algorithm, were used to train all models. The models were trained and tested until
the best fitting network architectures were obtained by genetic algorithm
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the model. Then, the results in testing data sets were compared
with evaluating the model performance. The best suited ANN
models were optimized as 7:5:6:1 for CODin, 7:4:4:1 for vol-
atile phenolin, 7:3:4:1 for cyanidein, and 7:5:6:1 for NH4

+-Nin

corresponding node number of input, 1st hidden, 2nd hidden,
and output layers, respectively (Fig. 2). The weight matrices
of developed ANN models are listed in Tables S1–S4. The
relative importance of variables was calculated according to
Soleymani et al. (2011), and the results are presented in
Fig. S1.

The best ANN modeling results for COD are shown in
Figs. 3a and 4a. The optimized model for CODin had RMSEs
of 127.7 (6 %), 140.4 (7 %), and 148.2 mg L−1 (7 %) on the
training, validating, and testing data sets, respectively (R2 of
0.871 for overall data sets). The ANN results in Fig. 3a
showed that the variation tendency of the measured concen-
trations can be well estimated, which indicated that the opti-
mized CODin estimator provided a satisfactory estimating
performance.

The performance of the optimized model for volatile
phenolin was as good as that of CODin. The RMSEs of the
optimized volatile phenolin estimation model for training, val-
idating, and testing data sets were 28.62 (7 %), 25.16 (6 %),
and 32.37 mg L−1 (8 %), respectively, and the R2 value for
overall data sets was 0.904. As shown in Fig. 3b, the estimated
volatile phenolin values were able to track the highly fluctuat-
ed observed volatile phenolin values. Thus, statistical mea-
sures of accuracy (RMSEs and R2 values) and visual

inspection indicated that volatile phenolin concentration can
also be well estimated. In addition, this simple model for the
volatile phenolin estimation also had good generalization ca-
pability without over-fitting, as demonstrated by low level of
RMSEs (<10 %) between the observed and estimated testing
data sets.

The same simulation procedure for the CODin and volatile
phenolin estimations was applied to develop a process model
for cyanidein estimation. More specifically, it was impossible
to measure real-time cyanidein concentration because of lack
of on-line sensors. The best ANN modeling result for
cyanidein is shown in Figs. 3c and 4c. Good correlation was
obtained between the observed and estimated values with
RMSEs of 0.26 (7 %), 0.31 (9 %), and 0.35 mg L−1 (10 %)
for the training, validating, and testing data sets, respec-
tively (R2 value of 0.846 for overall data sets). Of note,
the highly fluctuated observed cyanidein values in data
points 0–53 (Fig. 3c) and the continuous high values in
data points 95–115 (Fig. 3c) were successfully estimated
by this model.

The best ANN modeling results for NH4
+-N are shown in

Figs. 3d and 4d. Compared with CODin, volatile phenolin, and
cyanidein, the NH4

+-N estimation model had lowest R2 value
at 0.777 for overall data sets. The optimized BP-ANN model
for NH4

+-N had RMSEs of 5.5 (10 %), 5.9 (11 %), and
6.6 mg L−1 (12 %) for training, validating, and testing data
sets, respectively. The total variation tendency of observed
NH4

+-Nin was predicted by optimized ANN model (Fig. 3d).

Table 3 ANN model performance statistics

Predicted parameters Training algorithm R2 Training Validating Testing

MAE RMSE MAE RMSE MAE RMSE

CODin GDX 0.716 92.6 112.6 93.2 110.9 216.7 243.8

BR 0.871 105.8 127.7 119.4 140.4 126.6 148.2

Volatile phenolin GDX 0.813 21.64 25.14 22.16 24.64 41.62 58.62

BR 0.904 22.94 28.62 23.16 25.16 27.64 32.37

Cyanidein GDX 0.842 0.16 0.24 0.21 0.27 0.73 0.82

BR 0.846 0.21 0.26 0.24 0.31 0.31 0.35

NH4
+-Nin GDX 0.679 3.9 4.3 4.6 5.1 12.6 14.3

BR 0.777 4.8 5.5 5.1 5.9 5.9 6.6

CODef GDX 0.816 16.9 18.4 17.9 19.8 49.6 59.9

BR 0.852 18.1 19.6 20.4 21.7 23.6 26.9

Volatile phenolef GDX 0.649 0.02 0.02 0.03 0.03 0.23 0.31

BR 0.752 0.02 0.03 0.03 0.04 0.04 0.04

Cyanideef GDX 0.791 0.08 0.08 0.10 0.12 1.42 1.62

BR 0.844 0.09 0.10 0.12 0.13 0.14 0.16

NH4
+-Nef GDX 0.729 0.9 1.0 1.0 1.3 4.6 5.7

BR 0.764 1.0 1.1 1.3 1.4 1.7 1.8

Two BP-ANN training algorithms, including gradient descent with adaptive learning rate (GDX) algorithm and Bayesian regularization (BR) algorithm,
were used to train all models. The models were trained and tested until the best fitting network architectures were obtained by genetic algorithm. MAE
and RMSE both had the unit of mg L−1 for COD, volatile phenol, cyanide, and NH4

+ -N
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Fig. 3 Estimated and observed values of multiple parameters a CODin, b volatile phenolin, c cyanidein, and d NH4
+-Nin

Fig. 4 Regression plots of estimated and observed values of multiple parameters a CODin, b volatile phenolin, c cyanidein, and d NH4
+-Nin
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However, the suddenly fluctuated values were not well esti-
mated, resulting in high RMSEs and low R2.

Prediction of biotreatment effluent variables

The estimated concentrations of CODin, cyanidein, volatile
phenolin, and NH4

+-Nin, which were the outputs of process
disturbance estimator, were subsequently fed into the process
behavior predictor as part of the input with other variables to
predict the concentrations of CODef, cyanideef, volatile
phenolef, and NH4

+-Nef, respectively (Fig. 2). The best suited
model was optimized as 9:8:10:1 for CODef, 9:7:10:1 for vol-
atile phenolef, 9:6:6:1 for cyanideef, and 9:7:8:1 for NH4

+-Nef

corresponding node number of input, 1st hidden, 2nd hidden,
and output layers, respectively. The weight matrices of devel-
oped ANN models are listed in Tables S5–S8, and the relative
importance of variables is presented in Fig. S2. Furthermore,
the residual distribution of the predicted values is presented in
Fig. S3.

The observed and predicted values of CODef had RMSEs
of 19.6 (8%), 21.7 (9%), and 26.9 mg L−1 (11 %) for training,
validating, and testing data sets (Fig. 5a). This model per-
formed satisfactorily in terms of predicting CODef based on
the estimated CODin over the full data range (R2 value of
0.852), as shown in Fig. 6a. This model showed slightly worse
prediction performance (lower R2 values) compared with the
CODin estimation model. However, the fluctuated COD

values were well estimated, indicating that this model can
predict the CODef.

The lack of on-line monitoring sensor for toxic cyanide
might induce high risk of CWWTP effluent. Therefore, the
prediction of cyanideef was important to guarantee the safety
of effluent received water bodies. The performance of the BP-
ANN model for cyanideef prediction gave an RMSE of
0.10 mg L−1 (8 %) on the training data set. The RMSEs for
validating and testing data sets were 0.13 (11 %) and
0.16 mg L−1 (13 %) (Fig. 5). The observed and predicted
cyanideef values on all three data sets are presented in
Fig. 5c, and the regression plots of predicted and observed
values are presented in Fig. 6c (R2 of 0.844). The average
differences between observed and predicted cyanideef were
low, indicating that this prediction model can predict
cyanideef.

The lack of on-line volatile phenol monitoring sensor in
CWWTP also resulted in risk of effluent. In volatile phenolef
prediction model, the overall prediction performance was
slightly worse (R2 value of 0.752), and some data points were
unpredicted compared with the observed volatile phenolef (da-
ta points 60–75, Fig. 5b). The performance of BP-ANNmodel
for volatile phenolef prediction gave an RMSE of 0.n16 %
mg L−1 on the training data set. The RMSEs for validating
and testing data sets were 0.04 (22%) and 0.04 mg L−1 (22 %)
(Fig. 5). The differences between the estimated and measured
data in volatile phenolef models were higher compared with
CODef models (lower R2 value), but still reflected the general

Fig. 5 Predicted and observed values of multiple parameters. a CODef, b volatile phenolef, c cyanideef, and d NH4
+-Nef
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variation tendency of volatile phenolef values. The poor fit of
simulated and observed volatile phenolef can be attributed to
the relative lower concentration (mean value at 0.23 mg L−1)
than COD (mean COD at 233 mg L−1). Furthermore,
the dissolved volatile phenols in CWW included phenol,
cresol, and other phenol derived matters, which were
characterized by high volatility. The atmospheric pres-
sure, water temperature, and the aeration rate of fluid-
ized bed might have effects on the removal of volatile
phenols. Therefore, further improvement of the volatile
phenolef prediction capability could be achieved using
more detailed information about these operation param-
eters of fluidized bed.

Similarly, the optimized BP-ANN model for the prediction
of NH4

+-Nef was less accurate than those of CODef and
cyanideef. The R2 value for the overall data sets was 0.764.
The optimized BP-ANN model for NH4

+-Nef had RMSEs of
1.1 (17 %), 1.4 (24 %), and 1.8 mg L−1 (27 %) on the training,
validating, and testing data sets, respectively. The poor predic-
tion of NH4

+-Nef might be due to several reasons. The first one
might be the intermittent incoming desulfurization wastewa-
ter, which contained higher dosage cyanide than continuous

distilled ammonia wastewater. The sudden inflow of desulfur-
ization wastewater induced highly fluctuated cyanidein values
in data points 0–53 (Fig. 3c) and the continuous high level (4–
8 mg L−1) in data points 95–115 (Fig. 3c).

It was reported that cyanide had significant inhibitory ef-
fects on both ammonia-oxidizing bacteria and nitrite-
oxidizing bacteria (Kim et al. 2011). Second, the high NH4

+-
N content of influent might also be a possible reason to the
poorer fit of NH4

+-Nef model. It was observed that the NH4
+-

Nin value was high in the range of data points 65–110 (NH4
+-

Nin dosage >50mg L−1). The fluctuated cyanide and hydraulic
load had impacts on the microorganism, such as nitrify-
ing bacteria, in fluidized beds. NH4

+-Nef dosage was
high in the range of data points 0–55 and 95–110
(NH4

+-N dosage in the range of 10–40 mg L−1), which
reflected an inhibition of ammonia-oxidizing process. Of
note, the predicted NH4

+-Nef could not follow the ob-
served values in these data ranges (Fig. 5d). Thus, the
NH4

+-Nef prediction accuracy could be improved using
more detailed information about intermittent incoming
desulfurization wastewater such as inflow period, flow
rate, and the concentrations of cyanidein.

Fig. 6 Regression plots of predicted and observed values of multiple parameters. a CODef, b volatile phenolef, c cyanideef, and d NH4
+-Nef
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Conclusions

In this study, a BP-ANN combined with sequential modeling
approach and GAwas used to develop dynamic models for the
prediction of COD, volatile phenol, cyanide, and NH4

+-N
removal in a full-scale CWWTP. The former parts of these
models estimated the variations of influent COD, volatile phe-
nol, cyanide, and NH4

+-N. The estimated values, with other
measured parameters, were fed into the later parts of models
which predicted the variations of effluent COD, volatile phe-
nol, cyanide, and NH4

+-N. The results indicated that the in-
fluent estimator successfully developed dynamic models for
COD, volatile phenol, cyanide and NH4

+-N, and the effluent
predictor developed feasible models for effluent COD and
cyanide prediction. Further research would be focused on
the improvement of prediction capability for effluent volatile
phenol and NH4

+-N by using more relevant variables.

Acknowledgments This work was supported by the State Key Pro-
gram of National Natural Science Foundation of China (No.
21037001), the National Natural Science Foundation of China (No.
51308224), and the National Natural Science Foundation of China (No.
21377040).

References

Aggarwal K, Singh Y, Chandra P, Puri M (2005) Bayesian regularization
in a neural network model to estimate lines of code using function
points. J Comput Sci 1:505–509

Angelino S, Gennaro M (1997) An ion-interaction RP-HPLC method for
the determination of the eleven EPA priority pollutant phenols. Anal
Chim Acta 346:61–71

APHA, AWWA, WEF, (1998) Standard methods for the examination of
water and wastewater. American Public Health Association,
Washington, DC

Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic diges-
tion using the IWA Anaerobic Digestion Model No. 1 (ADM1).
Water Res 39:171–183

Bongards M (1999) Controlling biological wastewater treatment plants
using fuzzy control and neural networks, Computational
Intelligence. Springer, 142–150

Dürrenmatt DJ, Gujer W (2012) Data-driven modeling approaches to
support wastewater treatment plant operation. Environ Model
Softw 30:47–56

Goldberg DE (1989) Genetic algorithms in search, optimization, and
machine learning. ReadingAddison, -Wesley

Güçlü D, Dursun Ş (2010) Artificial neural network modelling of a large-
scale wastewater treatment plant operation. Bioprocess Biosyst Eng
33:1051–1058

Hong YS BS, Charles T (1998) A genetic adapted neural network anal-
ysis of performance of the nutrient removal plant at Rotorua. The

Institution of Professional Engineers New Zealand Annual
Conference, Auckland

Hong Y-ST, Rosen MR, Bhamidimarri R (2003) Analysis of a municipal
wastewater treatment plant using a neural network-based pattern
analysis. Water Res 37:1608–1618

Hong SH, Lee MW, Lee DS, Park JM (2007) Monitoring of sequencing
batch reactor for nitrogen and phosphorus removal using neural
networks. Biochem Eng J 35:365–370

Huang M, Wan J, Wang Y, Ma Y, Zhang H, Liu H, Hu Z, Yoo C (2012)
Modeling of a paper-making wastewater treatment process using a
fuzzy neural network. Korean J Chem Eng 29:636–643

Jing JY, Feng J, Li WY (2009) Carrier effects on oxygen mass transfer
behavior in a moving‐bed biofilm reactor. Asia Pac J Chem Eng 4:
618–623

Kim YM, Park D, Lee DS, Park JM (2007) Instability of biological
nitrogen removal in a cokes wastewater treatment facility during
summer. J Hazard Mater 141:27–32

Kim YM, Park D, Lee DS, Jung KA, Park JM (2009) Sudden failure of
biological nitrogen and carbon removal in the full-scale pre-denitri-
fication process treating cokes wastewater. Bioresour Technol 100:
4340–4347

KimYM, Lee DS, Park C, Park D, Park JM (2011) Effects of free cyanide
on microbial communities and biological carbon and nitrogen re-
moval performance in the industrial activated sludge process. Water
Res 45:1267–1279

Lai P, Zhao H, Ye Z, Ni J (2008) Assessing the effectiveness of treating
coking effluents using anaerobic and aerobic biofilms. Process
Biochem 43:229–237

Lee J-W, Suh C, Hong Y-ST, Shin H-S (2011) Sequential modelling of a
full-scale wastewater treatment plant using an artificial neural net-
work. Bioprocess Biosyst Eng 34:963–973

Pal P, Kumar R (2014) Treatment of cokewastewater: a critical review for
developing sustainable management strategies. Separat Purif Rev
43:89–123

Pendashteh AR, Fakhru’l-Razi A, Chaibakhsh N, Abdullah LC, Madaeni
SS, Abidin ZZ (2011) Modeling of membrane bioreactor treating
hypersaline oily wastewater by artificial neural network. J Hazard
Mater 192:568–575

Riedmiller M (1994) Advanced supervised learning in multi-layer
perceptrons—from backpropagation to adaptive learning algo-
rithms. Comput Standard Interf 16:265–278

Schulze F, Wolf H, Jansen H, Veer P (2005) Applications of artificial
neural networks in integrated water management: fiction or future?
Water Sci Technol 52:21–31

Show K-Y, Lee D-J, Pan X (2013) Simultaneous biological removal of
nitrogen–sulfur–carbon: recent advances and challenges. Biotechnol
Adv 31:409–420

Soleymani AR, Saien J, Bayat H (2011) Artificial neural networks devel-
oped for prediction of dye decolorization efficiency with UV/
K2S2O8 process. Chem Eng J 170:29–35

ZhangW,Wei C, Chai X, He J, Cai Y, RenM, Yan B, Peng P, Fu J (2012)
The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs)
in a coking wastewater treatment plant. Chemosphere 88:174–182

Zhu X, Tian J, Liu R, Chen L (2011) Optimization of Fenton and electro-
Fenton oxidation of biologically treated coking wastewater using
response surface methodology. Sep Purif Technol 81:444–450

Environ Sci Pollut Res (2015) 22:15910–15919 15919


	Sequential...
	Abstract
	Introduction
	Materials and methods
	CWWTP and data set
	Analytical methods
	BP-ANN model and genetic algorithm
	Training algorithm
	Sequential training processes
	Evaluation of model performance

	Results and discussion
	Comparison of GDX and BR algorithms
	Estimation of biotreatment influent variables
	Prediction of biotreatment effluent variables

	Conclusions
	References


