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Abstract
Mercury contamination in soil and water has become a major concern to environmental quality and human health. Among 
the existing remediation technologies for mercury pollution control, sorption via iron-based materials has received wide 
attention as they are environmental friendly and economic, and their reactivity is high and controllable through modulating 
the morphology and surface properties of particulate materials. This paper aimed to provide a comprehensive overview on 
environmental application of a variety of iron-based sorbents, namely, zero valent iron, iron oxides, and iron sulfides, for 
mercury remediation. Techniques to improve the stability of these materials while enhancing mercury sequestration, such 
as nano-scale size control, surface functionalization, and mechanical support, were summarized. Mechanisms and factors 
affecting the interaction between mercury and iron-based materials were also discussed. Current knowledge gaps and future 
research needs are identified to facilitate a better understanding of molecular-level reaction mechanisms between iron-based 
materials and mercury and the long-term stability of the immobilized mercury.
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Introduction

Mercury (Hg) is considered as one of the most pervasive and 
bioavailable heavy metals in the environment. It is widely 
applied in industrial processes such as production of chlor-
alkali, pulp, plastics and electronics, mining, and rubber pro-
cessing (Boening 2000). Hg has three valence states (i.e., 
+I, +II, and 0), and occurs in both inorganic and organic 
forms. The divalent mercury, Hg(II), is highly soluble and 
ubiquitous in the environment. Methylmercury (MeHg) is 
the Hg species of greatest concern due to its ability to bio-
accumulate in biota and biomagnify along food chains. The 
primary source of MeHg is methylation of inorganic Hg(II) 

by anaerobic bacteria in natural aquatic environment (Zhang 
et al. 2014a).

Hg poses a severe threat to living creatures. Long-term 
exposure to Hg leads to a variety of symptoms, ranging from 
tremors, loss of vision and hearing, to extreme neurologi-
cal damages, such as loss of sensation (Hsiao et al. 2011). 
To date, over 130 countries have agreed to join the United 
Nation’s Minamata Convention for reducing Hg emission 
and utilization of Hg containing products (AMAP/UNEP 
2013). The maximum concentration of Hg in drinking water 
was recommended at 6 µg/L for inorganic Hg by the World 
Health Organization (WHO 2017). The US Environmental 
Protection Agency specifies the maximum contaminant level 
of inorganic Hg to be 2 µg/L (USEPA 2018). However, Hg 
contamination in soil and water is prevalent. For instance, Bol-
len et al. (2008) reported that Hg content in soil reached up to 
11,000 mg/kg and Hg concentration in a groundwater plume 
with a width of 100 m and a length of 1.3 km reached up 
to 230 µg/L at a former wood impregnation site in Southern 
Germany. A recent nationwide survey of soil contamination 
in China revealed that the average Hg content in 1.6% of the 
detecting points exceeded the regulation level according to the 
Ministry of Environmental Protection and Ministry of Land 
and Resources of China (Bulletin on Natural Survey of Soil 
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Contamination in 2014). Hence, a growing number of research 
efforts have focused on improving environmental remediation 
for Hg contamination.

Existing Hg treatment technologies include ion exchange 
(Monteagudo and Ortiz 2000), cementation (Ku et al. 2002), 
chemical precipitation (Blue et al. 2010), and bioremedia-
tion (Essa et al. 2002). These techniques are effective to some 
extent, however, most of them suffer from various drawbacks 
such as high cost, incomplete removal, operational difficulties, 
complicated industrial setups, and production of toxic sludge 
(Roberts and Rowland 1973). Among all the known methods, 
sorption has emerged as one of the most feasible treatments for 
Hg contamination since it is easily implemented and widely 
adaptable.

Although a number of sorbents, such as activated carbon, 
polymers, and biomass materials, have been assessed for Hg 
sequestration (Yu et al. 2016), iron-based materials including 
zero valent iron (ZVI) (Lewis et al. 2016; Wilkin and McNeil 
2003; Zhou et al. 2013), iron oxides (Lu et al. 2014; Parham 
et al. 2012; Richard et al. 2016), and iron sulfides (Bower et al. 
2008; Han et al. 2014) are considered the most promising and 
effective sorbents for Hg due to their high reactivity, control-
lable particle size, low cost and environmental compatibility. 
The main challenge of in situ application of iron-based materi-
als is the aggregation during preparation process which usu-
ally results in large-sized particles with limited mobility and 
reactivity. The aggregation of iron-based materials in fixed 
bed column or other dynamic flow systems can cause high-
pressure drop, and thus restrict the direct use for field-scale 
application. A variety of approaches, particularly nanomateri-
als (Gong et al. 2014) and surface functionalization (Dodi et al. 
2012; Oveisi et al. 2017; Wang et al. 2016) have been devel-
oped to overcome the abovementioned limitations. Moreover, 
supporting materials such as graphene oxide (GO) (Huang 
et al. 2017) and alumina oxide (Sun et al. 2017a), have been 
used as mechanical supports to restrain the aggregation and 
enhance the dispersion of particles.

The main purpose of this review was to provide an assess-
ment of the applicability of iron-based materials for Hg reme-
diation under environmental conditions. Specifically, the 
review aimed to: (1) elucidate the mechanisms and factors 
affecting Hg sequestration by iron-based materials; (2) assess 
the technical applicability and limitations; (3) summarize 
the approaches for improving the performance of iron-based 
materials; and (4) identify critical knowledge gaps and future 
research needs.

Iron‑Based Materials Suitable for Hg 
Remediation

Zero‑Valent Iron

ZVI is a strong reductant with a standard reduction poten-
tial  (E0) of − 0.440 V (Eq. 1):

Metals with  E0 more positive than  Fe0 are preferentially 
reduced when reacting with ZVI (Fu et  al. 2014). For 
instance, Hg(II) can be reduced by ZVI to form elemental 
Hg ( Hg0

(g)
 ) (Eq. 2):

ZVI can also react with water under both aerobic and 
anaerobic conditions to generate  Fe2+ and  Fe3+ (Eqs. 3–6), 
which may further transform to mineral phases, such as 
oxyhydroxide, on the surface of ZVI, exhibiting strong 
affinity for Hg (Biernat and Robins 1972; Gu et al. 1999; 
Kenneke and McCutcheon 2003; Majewski 2006; Sayles 
et al. 1997).

Successful removal of Hg using ZVI has been dem-
onstrated in different environmental matrices. Zhou et al. 
(2013) reported that 0.05 g ZVI effectively removed 94.5% 
of 100 µg/L Hg(II) from wastewater at an initial pH of 
5.0. Wilkin and McNeil (2003) added ZVI to synthetic 
acid mine drainage, and the total Hgconcentration was 
decreased from ∼3100 to < 70 µg/L. When ZVI was uti-
lized in permeable reactive barrier (PRB) in a field experi-
ment, the Hg content in groundwater was reduced from 
∼40 to < 0.1 µg/L (Weisener et al. 2005). Lewis et al. 
(2016) studied the applicability of ZVI (< 2 mm) as sedi-
ment amendments in vegetated laboratory microcosms as 
well as wetland mesocosms, and the addition of ZVI sig-
nificantly alleviated MeHg accumulation in pore water and 
in a freshwater snail.

Despite of the high reactivity of ZVI, challenges 
remained in environmental application of this materials: 
(1) the side reaction pathways, such as nitrate and/or oxy-
gen reduction by ZVI, may overcompete the Hg–ZVI inter-
action and thus compromise the remediation efficiency; 

(1)Fe0
E0=−0.44 V
����������������������������������������→ Fe2+ + 2e−

(2)Hg2+
(aq)

+ Fe0
(s)

→ Hg0
(g)

↑ +Fe2+
(aq)

(3)2Fe0 + O2 + 2H2O → 2Fe2+ + 4OH−

(4)4Fe2+ + O2 + 2H+
→ 4Fe3+ + 2OH−

(5)Fe0 + 2H2O → Fe2+ + H2 ↑ +2OH−

(6)Fe2+ + H2O → Fe3+ +
1

2
H2 ↑ +OH−
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(2) ZVI is not thermodynamically stable in aqueous solu-
tion and is subject to corrosion by water molecules; (3) 
ZVI easily aggregates to form large particles that are less 
reactive and mobile; and (4) oxidation of ZVI increases 
the solution pH, which likely leads to precipitation of 
non-contaminant phases such as calcium carbonate, and 
decrease the permeability of PRB.

Iron Oxides

Iron oxides, such as maghemite (γ-Fe2O3), magnetite 
 (Fe3O4), and hematite (α-Fe2O3), possess magnetic proper-
ties and can be separated from treated water by a simple 
external magnetic field. Given their eco-friendliness and low 
cost, magnetic iron oxides have attracted much attention in 
the application of treating Hg-contaminated water (Lu et al. 
2014; Parham et al. 2012; Richard et al. 2016). Parham et al. 
(2012) reported that  Fe3O4 removed 44% of 50 µg/L Hg(II) 
from aqueous solutions.

Hydrous ferric oxides are highly porous and poorly crys-
talline iron-based materials, and can serve as sorbents for 
Hg. Maia et al. (2019) investigated the sorption of Hg(II) by 
δ-FeOOH in aqueous solutions. They reported that Hg(II) 
was mainly sorbed through surface complexation and the 
maximum sorption capacity was 35.7 mg/g at pH 7.0.

Fe–Mn binary oxides are ubiquitous in natural aquatic 
environment and have strong affinity for Hg (Lu et al. 2014). 
Lu et al. (2014) explored the removal mechanism of trace 
Hg(II) by in situ formed Fe–Mn oxides in aqueous solution. 
They reported that 40 mg/L Fe–Mn as Fe (molar ratios of 
Mn/Fe = 0.33) effectively removed 80% of 30 µg/L Hg(II) 
at pH 7.0 via concurrent surface complexation and floccu-
lation-precipitation processes.

There are several shortcomings with the application of 
iron oxides. For example, iron oxides have limited sorption 
capacity and selectivity for Hg. Also, it is difficult to deliver 
the materials into the subsurface areas, and thus impeding 
their use for in situ soil and groundwater remediation.

Iron Sulfides

Hg(II) is a soft Lewis acid that preferentially binds with soft 
Lewis bases, particularly those with sulfur or thiol groups. 
Iron sulfides, such as mackinawite (FeS) and pyrite  (FeS2) 
have been regarded as the most applicable materials for 
Hg sorption due to their high affinity towards Hg  (Ksp of 
HgS = 2 × 10−53) (Barnett et al. 2001).

Pyrite, as the most abundant metal sulfide in nature, is 
commonly available and inexpensive (Duan et al. 2016). 
The surface of pyrite mineral is often comprised of a pyritic 
area and an oxidized zone with iron hydroxides, and Hg 
can interact with the pyritic functional groups and/or the 
hydroxyl groups (Ehrhardt et al. 2000). Bower et al. (2008) 

investigated the potential of pyrite as a PRB material to 
immobilize Hg(II) in groundwater. Batch experiments 
showed that 2 g/L pyrite removed > 95% of 2 mg/L Hg(II) 
from aqueous solutions at pH from 4.1 to 10.4, and the 
maximum sorption was equivalent to 1000 µg Hg/g pyrite. 
Column experiments demonstrated that Hg(II) was mostly 
sequestered by a thin reactive barrier of pyrite in a packed 
column, with breakthrough of Hg(II) in effluent delayed by 
15-fold. Moreover, the immobilized Hg was not readily re-
mobilized, indicating the irreversible nature of the reaction, 
a desirable characteristic of a subsurface PRB.

FeS can be synthesized via simple chemical precipitation 
of  Fe2+ and  S2−, and immobilizes Hg through chemical pre-
cipitation, Hg substitution into metastable FeS compounds, 
and surface complexation (Gong et al. 2014; Jeong et al. 
2007). Liu et al. (2008) investigated sorption of aqueous 
Hg(II) by synthesized FeS under anaerobic conditions. Batch 
kinetic tests showed that 0.4 g/L FeS removed nearly 100% 
of 200 mg/L Hg(II) solution within 20 min at an initial pH of 
5.6 and the main reaction products were metacinnabar, cin-
nabar, and Hg iron sulfides. Han et al. (2014) reported that at 
pH 8.0, 0.05 g/L FeS completely removed 100 mg/L Hg(II) 
within 10 min. At higher Hg(II) concentrations (200 and 
250 mg/L), longer time was required to reach more than 99% 
removal. A biphasic sorption behavior was observed, which 
was probably due to the fast initial transport of Hg(II) to 
the FeS surface and the slow chemical interactions between 
Hg(II) and FeS surface.

Sun et al. (2017b) compared the sorption capacity of syn-
thetic FeS and natural pyrite toward Hg(II) in aqueous sys-
tem. Batch experiments revealed that synthetic FeS offered 
much greater maximum sorption capacity (769.2 mg/g) 
compared to pyrite (9.9 mg/g) as FeS had a larger specific 
surface area with more sorption sites. They proposed that 
synthetic FeS demonstrated excellent tolerance to pH, chlo-
ride and coexisting cations and is a promising sorbent for 
treatment of high-concentration Hg(II)-containing waste-
water (< 20 mg/L), while pyrite can be applied as a long-
term adsorbing material in the immobilization of wastewater 
containing low Hg(II) concentration (< 1 mg/L) due to its 
cost-effective property and wide availability.

Approaches for Improving the Remediation 
Performance of Iron‑Based Materials

Iron-based materials tend to aggregate rapidly in conven-
tional systems due to van der Waals forces and high specific 
energy, resulting in a decrease in reactivity and soil deliver-
ability, which limited their practical application, especially 
for in situ soil remediation in deeper contaminated zones. 
To overcome these limitations, a variety of approaches have 
been developed including attaching a stabilizer such as a 
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soluble polymer on the surface or adding surface functional 
groups. Moreover, supporting materials, including zeolite, 
kaolinite, have been widely used as mechanical supports to 
restrain the aggregation of particles. Through these technol-
ogies, more physically stable and chemically reactive iron-
based materials were obtained, and their Hg immobilization 
abilities were enhanced.

Nanomaterials

Compared with bulk particles, nanoparticles have shown 
great potential for treatment of contaminated groundwater 
and soil due to the small particle size, large surface area, 
high reactivity, and controllable soil deliverability. Recent 
work has demonstrated that preparation of iron-containing 
minerals in the presence of polyelectrolyte coatings, such 
as starch, carboxymethyl cellulose (CMC), and chitosan, 
resulted in nano-sized particles with highly improved sta-
bility due to steric hindrance and electrostatic repulsion ena-
bled by the coating. These materials exhibited large sorption 
capacity for heavy metals (Gong et al. 2012; Xiong et al. 
2009).

Gong et al. (2014) compared the aqueous Hg(II) removal 
of non-stabilized and CMC-stabilized FeS and found that 
the CMC-stabilized FeS offered a much higher Langmuir 
sorption capacity (3449 mg/g) at pH 7.0 due to the smaller 
FeS particles, greater specific surface area, and thus higher 
abundance of sorption sites. CMC-stabilized FeS nanopar-
ticles have also been successfully applied to treat Hg-con-
taminated soil/sediment. Xiong et al. (2009) found that at an 
FeS-to-Hg molar ratio of 26.5, the nanoparticles reduced the 
water-leachable Hg concentration from a clay loam marine 
sediment (Hg content = 177 mg/kg) by 97% and reduced the 
leachability of Hg by 99% according to the toxicity charac-
teristic leaching procedure (TCLP).

Introducing stabilizers to the particles has improved the 
soil deliverability of the particles. Gong et al. (2012) inves-
tigated the soil/sediment deliverability and transport behav-
ior of CMC-stabilized nanoparticles via a series of column 
breakthrough tests, and they found that the nanoparticles 
were deliverable in the sediment/soil columns under mod-
erate injection pressure (0.4–0.5 psi) while non-stabilized 
FeS were completely retained on the top of the soil/sedi-
ment bed due to large particle size (1632 nm) (Gong et al. 
2012). When a Hg-laden sediment was treated with 160 pore 
volumes of 0.5 g/L CMC-stabilized FeS (CMC concentra-
tion = 0.2 wt%), the water-leachable Hg was reduced by 47%, 
and the TCLP leachability was reduced by > 75%.

The application of nanoparticles has evolved into 
a promising cleanup strategy for in situ remediation of 
Hg-contaminated soil and groundwater. Stabilized nano-
particles demonstrate unprecedented advantages over 

traditional aggregated particles, including enhanced sorp-
tion affinity, sorption capacity, and soil deliverability. The 
nanoparticles can be delivered directly into the contami-
nated aquifer that is not reachable by conventional mate-
rials, potentially reducing remediation cost. Yet, detailed 
information is lacking pertaining to the environmental 
fate and transport of stabilized nanoparticles as well as 
the associated impacts on the in  situ biogeochemical 
conditions.

Surface Functionalization

Hg sorption performance of iron-based materials can 
be improved by grafting new functional groups mainly 
amino groups (Chethan and Vishalakshi 2013; Dodi et al. 
2012) and thiol groups (Hakami et al. 2012; Huang et al. 
2017; Oveisi et al. 2017; Wang et al. 2016; Zhang et al. 
2013) onto the surface of the materials (Table 1), thereby, 
increasing the density of sorption sites and improving the 
sorption selectivity. At present, most surface functional-
ized iron-based materials are added into soil in the form of 
powder or granular particles through mechanical mixing. 
More information is needed regarding the effect of sur-
face functionalization on the mobility and environmental 
impacts of these sorbents.

Thiol-functionalized sorbents have strong affinity and 
high sorption capacity for Hg as a consequence of a soft 
Lewis acid–base interaction (Stumm and Morgan 1995). 
3-mercaptopropyltrimethoxysilane (3-MPTS) is one of 
the most widely used thiol-modification chemicals (Gui-
marães et al. 2009; Hakami et al. 2012; He et al. 2012; 
Yu et al. 2013; Zhang et al. 2013). Huang et al. (2017) 
developed a novel thiol-functionalized graphene oxide/
Fe–Mn (SGO/Fe–Mn) and tested the removal efficiency of 
aqueous MeHg. 50 mg/L SGO/Fe–Mn effectively removed 
91.1% of 50 µg/L MeHg within 3 days at pH 7.0 via con-
current electrostatic attraction and surface complexation. 
The maximum sorption capacity was determined to be 
43.9 mg/g at pH 7.0 and room temperature (25 ± 2°C), 
much higher than that of bare GO/Fe–Mn (15.5 mg/g).

Amino groups are involved in metal binding via (a) 
metal cation chelation in near neutral solutions (through 
the free electron doublet of nitrogen) and (b) ion-exchange/
electrostatic attraction on protonated amino groups (in 
acidic solutions) (Donia et al. 2012; Elwakeel and Guibal 
2015; Guo et al. 2014). A hybrid material was synthe-
sized with chitosan, glycidyl methacrylate and magnetite 
microparticles, and the amine groups were grafted onto 
the hybrid material using diethylenetriamine. The result-
ant amino-modified adsorbent selectively adsorbed Hg(II) 
from a mixture solution of Hg(II), Co(II), Cu(II), Fe(II), 
Ni(II), Zn(II) and Mg(II) (Elwakeel and Guibal 2015).
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Supported Iron‑Based Materials

Carbon-based materials including carbon nanotubes (CNTs), 
GO, and biochar, often show high mechanical strength and 
thermal stability, and thereby have been widely used as 
mechanic supports to prevent the aggregation of iron-based 
materials. As summarized in Table 2, the resultant sorbents 
usually demonstrate large sorption capacity of Hg (Alijani 
et al. 2015; Mahmoud et al. 2015; Tang et al. 2016; Zandi-
Atashbar et al. 2018). CNTs are composed of cylindrical 
shaped graphite sheets rolled up in a tube like structure, 
and include single walled carbon nanotubes and multiwalled 
carbon nanotubes (MWCNTs). Alijani et al. (2015) reported 
that a MWCNTs supported natural magnetic rock, with 
 Fe3O4 being the main component, was an efficient Hg(II) 
adsorbent with a maximum adsorption capacity of 200 mg-
Hg/g. GO have been widely applied in preparation of iron-
based composite, showing excellent stability and Hg adsorp-
tion performance (Huang et al. 2017). Tang et al. (2016) 
found that Fe–Mn oxides can be coated on the surface of GO 
through oxygen-containing functional groups and π-π inter-
actions to form a novel GO/Fe–Mn composite. As the mass 

ratio of GO to Fe increased from 0 to 7.5, Hg(II) removal 
efficiency was enhanced by nearly 20%.

Inorganic minerals, such as  SiO2 and  Al2O3, have been 
applied as supporting materials to prepare novel sorbents 
for Hg (Table 2) to improve stability and increase reaction 
active sites of iron-based materials. Aluminum oxide, a 
white hygroscopic powder with octahedral structure, pos-
sesses porous structure, high specific surface area, high 
stability, and strong moisture sorption characteristics. It 
is resistant to acid and alkali as well as high tempera-
ture (Sun et al. 2017a). Sun et al. (2017a) developed an 
 Al2O3-supported nanoscale FeS (FeS/Al2O3) to treat Hg 
contaminated water. FeS was evenly distributed on the sur-
face of  Al2O3.  Al2O3 effectively prevented the aggregation 
and oxidation of FeS. The maximum sorption capacity of 
Hg(II) onto FeS/Al2O3 achieved 313 mgHg/g, significantly 
higher than bare FeS. Pumice is a porous volcanic rock 
with large surface area and high mechanical strength. It 
contains open channels allowing water and ions to travel in 
and out of the crystal structure. Liu et al. (2014) prepared 
a pumice-supported ZVI using conventional liquid-phase 
methods via the reduction of ferric ion by borohydride. 

Table 2  Supported iron based materials for Hg removal

Iron based materials Hg immobilization mechanisms Hg sorption capacity References

Carbon materials
 Multiwalled carbon nanotubes-

magnetic rock
Chemical and physical adsorptions Qmax was 200 mg/g with Hg(II) 

concentrations of 0.5–80 mg/L 
within 90 min

Alijani et al. (2015)

 Activated carbon @Fe3O4–baker’s 
yeast

Electrostatic interaction and physical 
adsorption

Qmax was 160.5 mg/g with Hg(II) 
concentrations of 2–100 mg/L at 
pH 7 within 30 min

Mahmoud et al. (2015)

 Fe2CuO4/rGO A monolayer adsorption Qmax of Hg(II) was 1250 mg/g at pH 
7 within 60 min

Zandi-Atashbar et al. (2018)

 GO/Fe–Mn Ligand exchange and surface com-
plexation

Qmax was 32.9 mg/g with ini-
tial Hg(II) concentrations of 
0.1–5 mg/L at pH 7

Tang et al. (2016)

 CoFe2O4–rGO Monolayer chemisorption Qmax was 157.9 mg/g at pH of 4.6 
and 25°C

Zhang et al. (2014b)

 Resin–Fe3O4–β-cyclodextrin–GO Chelation or ion exchange Qmax was 88.4 mg/g at pH of 7.1 and 
50°C within 30 min

Cui et al. (2015)

 Fe3O4/γ-Fe2O3–biochar Chemisorption, surface complexa-
tion, and co-precipitation

The adsorption capacity was 
167.2 mg/g in 200 mg/L Hg(II) at 
pH of 6.5 and 30°C with 6 h

Wang et al. (2018)

Inorganic minerals
 FeS/Al2O3 Precipitation and surface complexa-

tion
Qmax was 313.0 mg/g at pH 6 and 

30°C
Sun et al. (2017a)

 Pumice–NZVI Physical adsorption and chemical 
reduction

The adsorption capacity was 
332.4 mg Hg/g Fe in 100 mg/L 
Hg(II) and 60 min

Liu et al. (2014)

 Azolla–OH–NZVI Coupled Fe(0)–Hg(II) redox reaction 
and adsorption

Qmax was 459.3 mg/g with Hg(II) 
concentrations of 2.5–300 mg/L 
and 1000 mg/L of adsorbent at 
25°C

Arshadi et al. (2017)
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ZVI particles with a mean diameter of 31 nm were uni-
formly distributed on the pumice surface. The thermal 
stability, mechanical strength, and Hg removal capacity 
of the material was greatly enhanced.

However, similar to surface functionalized iron materi-
als, the application of supported iron-based materials are 
restricted by the soil deliverability, and are currently suit-
able for Hg remediation in shallow soils. Moreover, there 
is limited information available on the regeneration and 
reusability of these materials.

Conclusions and Future Research Needs

Due to natural and anthropogenic activities, Hg contami-
nation has become one of the major environmental issues 
all around the world. Iron-based materials can effectively 
immobilize Hg in water and soil. This review presents the 
latest development and current limitation of the applica-
tion of ZVI, iron oxides, and iron sulfides for Hg immo-
bilization. Approaches that improve particle stability and 
enhance sorption selectivity can help overcome these 
limitations. To advance the Hg remediation technology 
enabled by iron-based materials, future research should 
address the following research gaps and challenges:

1. More studies should be performed to reveal the molecu-
lar-level reaction mechanisms between iron-based mate-
rials and Hg.

2. The majority of researches has evaluated the perfor-
mance of iron-based sorbents in removing relatively or 
extremely high concentrations of Hg in the laboratory. 
There is a need to work at Hg concentrations which are 
environmentally relevant.

3. It has been a rule rather than exception that water and 
soil are polluted with multiple pollutants including met-
als and organic chemicals. It is imperative to assess the 
efficacy of iron-based materials on co-contamination.

4. Pilot-scale experiments and field demonstration stud-
ies are needed to assess the applicability of iron-based 
materials for in situ Hg remediation.

5. Information on the long-term stability of stabilized 
Hg by iron-based materials is very limited. Long-term 
monitoring data, particularly under field conditions, are 
critical to evaluate the technology effectiveness.
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